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Abstract

We examined an eye-hand coordination task where optimal visual search and hand movement strategies were inter-related.
Observers were asked to find and touch a target among five distractors on a touch screen. Their reward for touching the
target was reduced by an amount proportional to how long they took to locate and reach to it. Coordinating the eye and
the hand appropriately would markedly reduce the search-reach time. Using statistical decision theory we derived the
sequence of interrelated eye and hand movements that would maximize expected gain and we predicted how hand
movements should change as the eye gathered further information about target location. We recorded human observers’
eye movements and hand movements and compared them with the optimal strategy that would have maximized expected
gain. We found that most observers failed to adopt the optimal search-reach strategy. We analyze and describe the
strategies they did adopt.
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Introduction

In visually guided manual tasks that involve a sequence of

targets, the movements of eye and hand are usually tightly linked

[1–4]. For example, in making a peanut butter and jelly sandwich

at home, you would typically fixate the jar of peanut butter while

you move your hand toward it [5]. In such a task the relationship

between eye and hand is simple: The hand always waits for the eye

to fixate the next target and then ‘‘follows the eye’’.

This strategy of coordination makes sense, intuitively. Shortly

after the start of sandwich making, you know where all the

relevant items are and, if you did not use your gaze to aid your

reach, it is unclear what you might do with your eyes instead. If,

however, there were a rewarding alternative (e.g. watching your

favorite television show), we might expect very different eye and

hand movements in carrying out the same task.

When we talk about rewards and the probabilities of rewards,

we are in the framework of statistical decision theory [6,7]. The

eye and the hand have potentially infinite ways to coordinate with

each other. Statistical decision theory allows us to predict the eye-

hand strategy that maximizes expected gain and compare human

performance to ideal.

In the past decade several groups of researchers have

compared human choice of hand or eye movements to the

performance of ideal decision makers who plan movements to

maximize expected gain or a similar criterion [See 8 for a

review]. Researchers evaluating eye movement selection in

visual search [9–11] or reading [12,13] have reported that

human performance is close to optimal. Researchers evaluating

reaching movements have found similar, near optimal, perfor-

mance in spatial [14,15] or temporal [16,17] reaching tasks. In

this article we examine human performance in a task where

participants plan a series of inter-related eye and hand

movements, searching for a target and reaching to touch it.

We compare human performance to ideal performance maxi-

mizing expected gain.

We investigated an eye-hand coordination task where we

created an unusual reward structure intended to encourage a

decoupling of the eye and the hand. Human observers were asked

to find and touch a target among five distractors (Figure 1). The

monetary reward they received for touching the target decreased

linearly with the total search-reach time, the time from the

appearance of the search arrays to touching the target. We were

interested in how much observers could reduce the search-reach

time by coordinating eye and hand appropriately. While there is

evidence that the mode of eye-hand coordination may vary with

experience [18] or skill [19], it is unknown whether people would

choose eye-hand coordination patterns that would maximize

expected gain.

In the task, we intentionally slowed down both visual search and

hand movements to amplify their temporal costs. This sort of

constraint occurs in everyday movements when, for example, we

carry a very full cup of tea from one place to another. Visual

objects (target or distractor) were made so complex that observers

had to fixate an object for 1,2 seconds to discriminate target from

distractor. Observers were required to move their finger along the

surface of the touch screen under a speed limit. It took about

9 seconds to cover the distance from the starting position to any of

the objects. As mentioned above, the observer received a monetary

reward for touching the target, a reward that decreased linearly

with time since the beginning of the trial.
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We designed that task so that a sequential strategy that consisted

of first locating the target and only then initiating the finger

movement away from the starting position to the target would

result in negligible reward. Participants could do considerably

better by starting their hand movement before they had located

the target through visual search. The strategy maximizing

expected gain required that they plan hand movements on

incomplete information about the target and update their

movement plan as further information about the target location

became available through visual search. If, for example, visual

search of all the targets on the left half of the display screen has

failed to find the target, then the target must be on the right side

and the trajectory of the hand can be adjusted to take advantage of

this additional knowledge.

The optimal strategies for an individual depend on the

individual’s speed in searching for the target, her movement

speed, and the spatial layout of the target and distractors. As

Figure 1 illustrates, the to-be-searched objects were spatially

divided into two clusters, one containing two, and the other four

objects, located to left and right of the midline of the display. Each

object was equally likely to be the target.

We developed a model of optimal eye-hand coordination

described under the Methods section. Intuitively, the optimal

initial movement strategy is to move more towards the larger

cluster than the smaller cluster, for the former has a larger

probability (4 out of 6) of containing the target. However, the

optimal eye movement search strategy is to first search the smaller

cluster. After only two searches, the observer will know whether

Figure 1. An example of the stimulus array. The red circle is the starting position for the eye and the hand. Each gray circle with blue shapes
inside is an object. Two clusters of objects are located to the left and right of the midline, on a virtual arc centered at the starting position. One cluster
contains four objects, the other two. On half the trials the two-cluster is on the left as shown, on the other half, on the right. Each object is equally
likely to be the target. One and only one of them is the target to be touched. See the Stimuli section for a definition of the target and distractors.
doi:10.1371/journal.pcbi.1002718.g001

Author Summary

A variety of human daily activities, such as cooking,
drawing, and driving, involve coordination of eye and
hand. Typically your hand moves towards whatever you
have just looked at. But is this coupling compulsory? To
test whether human observers can adopt appropriate eye-
hand coordination strategies to maximize rewards, we
created an unusual task where good performance required
that hand and eye move independently of each other in
order to rapidly find and touch a target. Observers were
rewarded for minimizing the overall time to find and touch
a target among distractors and we made the visual search
and hand movements very slow so that a simple ‘‘hand-
follows-eye’’ strategy would reduce observers’ winnings
considerably. Most observers failed to choose the optimal
visual search strategy but did intelligently coordinate hand
movements to the visual search strategy they did pick. The
‘‘very slow search and reach’’ task we developed provides
a novel approach to investigate coordination between
perceptual and motor systems experimentally and com-
putationally.

Eye-Hand Coordination for Reward Maximization
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the target is on the side with only two tokens or on the unsearched

side with four tokens. This knowledge quickly reduces the spatial

range of the possible aims of the reach movement.

We recorded observers’ eye movements and hand movements.

Before the search-reach task, observers were trained in visual

search with key press responses and in moving on the touch screen,

and during these training sessions we obtained their search slope

and reach speed separately. We compared the performance of

human observers to the performance predicted by our model of

optimal eye-hand coordination (maximizing expected gain)

described below.

We considered three questions. First, do people use the visual

search strategy that maximizes expected gain? In particular, do

observers search in the order that reduces the spatial uncertainty

of the target most quickly? We will conclude that they do not.

Second, the uncertainty of the target changes as the visual

search proceeds. At the beginning of a trial, any of the six objects

could be the target. When certain objects have been identified as

distractors, though the target is still unknown, the target can only

be one of the remaining objects. Can we find evidence that

observers adapt their hand movements to the partial information

acquired through visual search before the target location is

identified? In particular, do they move their hands at all before the

target location is known?

Finally, if people failed to maximize expected gain in visual

search and/or hand movement, could this failure be attributed to

a hard constraint of the motor system? Is it possible, for example,

that the hand has no choice but to follow the eye, whether

appropriate or not?

Methods

Ethics statement
The experiment had been approved by the University

Committee on Activities Involving Human Subjects (UCAIHS)

of New York University and informed consent was given by the

observer prior to the experiment.

Apparatus
Stimuli were presented in a dimly lit room on a 32-in.

(69.8639.2 cm) Elo touch screen, which was vertically mounted

in a Unistrut frame and was run at a frame rate of 60 Hz with

13666768 resolution in pixels. An Eyelink II eye tracker was used

to record the gaze positions of the observer. The display and

recording were controlled by a Dell Pentium D Optiplex 745

computer using the Psychophysics Toolbox [20,21] and the

Eyelink Toolbox [22]. A chinrest was used to help the observer to

maintain a viewing distance of 50 cm, at which distance 1 cm at

the center of the screen approximately subtended 1.1 deg. The

observer wore a single finger cut from a cloth glove to reduce the

resistance of movement. A touch screen calibration procedure was

performed for each observer before the experiment.

Stimuli
An example of the stimuli in the search-reach task is shown in

Figure 1. Each object (target or distractor) was a white-lined gray

circle (2 cm in radius), within which six shapes were evenly

distributed. Every two shapes opposite to each other formed a

pair. The shapes were equal in area and could be square,

pentagonal, or hexagonal. If all of the three pairs of an object were

made of two different shapes, the object was a distractor; the target

had exactly one pair that consisted of the same shapes. In Figure 1,

the target was the third object from the right.

The starting position for the finger was a red circle of 0.8 cm

radius, which was on the midline of the display and close to the

bottom. Two clusters of objects were located to left and right of the

midline, one cluster containing four objects, the other two. All the

objects were along a virtual arc centered at the starting position.

The center-to-center distance from the starting position to any

object was 27 cm. Within a cluster the objects were equally spaced

and the space between any two adjacent objects was 3 cm. That is,

with the starting position as the origin, centers of two adjacent

objects spanned an arc of 15 deg. The centers of the two clusters

were 45 deg left and 45 deg right of the midline. On each trial the

objects as a whole might have a clockwise or counter-clockwise

jitter of no more than 3.8 deg.

Procedure and design
The experiment consisted of two 1.5-hour sessions on two

different days. All observers went through the following three

experimental phases corresponding to three different tasks:

training of visual search, training of reach, and testing of search-

reach. In each trial of a particular task, observers receive bonus

points for successfully performing the task. During the trial, the

number of points that could be won started at 100 and decayed

linearly with the time used (at a rate of 8, 7, and 5 point/sec,

respectively, for the three tasks) until the task was successfully

completed or the count reached 0. The observer received the point

count remaining at the end of each trial. Every 1000 points were

redeemed as US$1 at the end of the experiment.

Training of visual search. The task in this phase was

ordinary visual search – to search for a target among distractors. A

trial began with the display of a red circular starting position on

the touch screen. When observers put their finger on the starting

position and fixated it for 0.5 second, six objects appeared, in

clusters of two and four. In half of the trials, the small cluster was

on the left and the large cluster on the right; in the other half, the

reverse. Observers knew that the target was equally likely to be any

of the objects. They kept their finger on the starting position

during the visual search. When they found the target, they

responded by lifting their finger while fixating the target. Feedback

followed. If they had correctly indicated the target, they were

informed how many reward points they had won in the trial.

Otherwise they were informed that they had erred and would

receive no reward.

Each observer completed three variants of the task. In the small-

cluster first task, observers were required to search the small cluster

first. If they fixated any object in the large cluster first or returned

to an object in the small cluster after they had visited the small

cluster, the trial would be cancelled and they received a warning

message. In the large-cluster first task, in contrast, observers were

required to search the large cluster first. By including the small-

cluster first and large-cluster first tasks, we induced observers to

explore different orders of search. The order of these two tasks was

counterbalanced across observers. Afterwards, in the last part of

visual search training, the free search task, observers were left free to

choose the order of search.

The layout of the objects could be small cluster on the left and

large cluster on the right or the reverse. The observer performed

12 trials in the practice and 6 (target location)62 (layout)68 = 96

trials in the formal experiment for each of these three tasks. These

tasks provided observers with experience at the visual search task.

At the same time, we could estimate the search slope (searches/

second) as well as the preference in search order for each observer

in the free search task. During visual search training no hand

movements were involved except to initiate the trial by touching

the red dot and terminate it by releasing the red dot.

Eye-Hand Coordination for Reward Maximization
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Training of reach. Observers fixated and pressed the

starting position to start the trial, just as they did in the visual

search tasks above. At the locations of the to-be-searched objects,

one white circle and five blue circles appeared instead. The task

was to move one’s finger along the surface of the screen into the

white target and then lifted the finger. Observers were required to

move at a speed of no more than 4 cm/s. The number of reward

points for successfully reaching the target linearly decreased with

the movement time. The feedback was similar to that of the search

tasks.

There were 12 practice trials and 6 (target location)62

(layout)68 = 96 experimental trials. In practice trials, a white

circle (radius 1 cm) followed the movement of the subject’s finger

on the screen with the subject in effect ‘‘dragging’’ the circle from

point to point on the screen. The speed of the circle was limited to

4 cm/s and the positions of the finger and the circle were recorded

every 16.7 milliseconds. If the finger moved too rapidly and

opened a gap between the center of the circle and the finger of

more than 1 cm, the trial would be terminated with a warning

message displayed. Thus, over the course of training, the subject

learned to move smoothly on the screen without ‘‘losing’’ the

circle. We applied the same speed limit algorithm during the main

part of the experiment but the circle was not visible. A trial was

cancelled and repeated later if the requirements of the movement

task were violated.

Parallel to the training of visual search, the goal of the training

of reach was two-fold. On one hand, it helped observers to move

comfortably on the screen under the speed constraint. On the

other hand, it enabled us to measure the actual speed for each

observer and detect possible motor biases.

Test of search-reach. After the separate tasks of visual

search and reach, in this phase, observers were tested with the

search-reach task as described in the Introduction. The search-

reach task was the same as the free search task except that

observers indicated the location of the target by moving their

finger to it. They followed the same speed constraint as in the

training of reach. The rewarding points for successfully finding

and reaching the target were based on the time from the

appearance of objects to the touching of the target. Feedback was

similar to that given in the search and reach tasks.

Each observer performed 12 practice trials and 6 (target

location)62 (layout)68 = 96 experimental trials for the search-

reach task. We did not repeat unsuccessful trials in the test of

search-reach. If observers failed on a trial, they lost the bonus for

the trial.

Observers completed the training of visual search in the first

session and the training of reach and test of search-reach in the

second session. For all the phases, the gaze positions and the screen

coordinates of the finger were recorded every 0.017 second.

Observers
Eight observers (four female) participated. None were aware of

the purpose of the experiment or the hypotheses under test. All

were right-handed and used their right index finger to move on the

touch screen. They received US$12 per hour plus a performance-

related bonus calculated as described above.

Model of optimal eye-hand coordination
What concerned us was the strategy of eye-hand coordination

people would use in the search-reach task. Based on statistical

decision theory [6,8,23], we modeled an ideal observer who

chooses the visual search strategy and the hand movement strategy

that jointly maximize her expected gain. We compared each

observer’s performance with that of the ideal observer who is

endowed with the same visual search and hand movement

capacities as the actual observer.

We number the six objects as 1,6 starting from the outmost

object of the small cluster (Figure 2, inset). The monetary rewards

the observer would receive in the search-reach task are propor-

tional to 100{5t, where t is the search-reach time, i.e. the time

from the appearance of the search arrays to the touch of the target.

Maximizing expected gain, in the current rewarding structure,

thus amounts to minimizing the expected search-reach time,

formulized as:

Et sE ,sHð Þ~
P6

i~1

Piti sE ,sHð Þ,
sE[SE

sH[SH

ð1Þ

where sE and sH respectively denote the strategies for the eye and

the hand, S(:) denotes the corresponding set of all possible

strategies, Pi denotes the probability of the i-th object to be the

target, which equals 1/6 because each of the six objects has the

same probability to be the target, ti(:) denotes the search-reach

time when the i-th object is the target.

Both the visual search strategy and the hand movement strategy

of interest apply up to the time point when the target is found,

since after that the only admissible strategy is to move one’s finger

straightly towards the target at full speed. The search-reach time is

the sum of the time to find the specific target plus this additional

reach time. The former is determined by the search strategy alone.

The latter is determined by the location of the finger when the

target is found, which in turn is determined by the search and

hand movement strategies.

To make the optimality problem tractable, we made some

reasonable assumptions about the process of search and reach.

First, we assumed that the observer fixates and examines one

object at a time and does not switch to the next target until the

current object is correctly classified as target or non-target.

Second, we assumed that it takes a constant time to saccade to a

target and then identify it to be the target or a distractor. The

actual time will differ with length of saccade, of course, but the

differences are negligible at the time scale of the experiment.

Third, we assumed that the observer changes the aim of her hand

movement only when a new object is identified.

With these assumptions, the visual search strategy is reduced to

specifying the order for the eye to visit the objects, such as 123456

or 342516, while the hand movement strategy could be specified

by changes in direction of the finger each time a new object is

identified. Let l be the time to saccade to and identify one object

and m be the speed of hand movement. Denote the location of the

i-th object as Li
!

. For specific visual search and hand movement

strategies, when the i-th object is the target, the search-reach time

is:

ti sE ,sHð Þ~lni sEð Þz
xi sE ,sHð Þ
������!

{Li
!���
���

m
ð2Þ

where ni sEð Þ denotes the number of objects visited up to and

including the point when the target is found, xi sE ,sHð Þ
������!

denotes the

location of the finger on the screen when the target is found.

Substituting Equation 2 into Equation 1 and cancelling ni sEð Þ,
we could express the expected search-reach time as a function of

xi sE ,sHð Þ
������!

, i~1,2,:::,6. To minimize the expected search-reach

time, we used the two steps as stated in the Introduction: First, for

any specific search order, we could select the six xi sE ,sHð Þ
������!

that

Eye-Hand Coordination for Reward Maximization
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minimizes the expected search-reach time at the search order. The

choice of xi sE ,sHð Þ
������!

is constrained by the speed of hand movement.

Next, we chose the search order that corresponds to the minimum

expected search-reach time.

Considering that the last two objects are actually interchange-

able in their order, we only need to specify the first four objects to

be searched. We simulated all of the possible permutations

(P4
6~360) for varying search slope and movement speed and

found that the search order of 1234 always led to the shortest

search-reach time, assuming that the hand strategy is optimal

contingent on the search order. More generally, the search orders

starting with the small cluster (1 or 2), on average, had a shorter

expected search-reach time than those starting with the large

cluster (3, 4, 5, or 6). We called the former the small-cluster first

strategy, the latter the large-cluster first strategy.

For simplicity, we assume that the observer does not switch to

the other cluster before finishing one cluster and goes from one

end to the other end within each cluster. In Figure 2A, we plot the

Figure 2. Optimal strategies of eye-hand coordination. A. Simulated expected search-reach time as a function of the order of
search. Each panel is for a different search and hand movement capacity. The objects are numbered from 1 to 6 (inset). Orders of search are indexed
with sequences of numbers. For instance, 12 34 denotes the sequence of fixations: object 1 first, then 2, then 3, then 4, and finally either 5 and 6 or 6
and 5 in either order. See text. Different colors denote different orders of search. We assumed that the observer always uses the optimal strategy of
hand movement that minimizes her expected search-reach time under the specific order of search. The displayed ranges of search time per object, l,
and hand movement speed, m, include those for human observers measured in the experiment. Whatever the search or movement speed of the
observer, the search order 1234, i.e. starting from the end of the small cluster and moving continuously towards the large cluster, leads to the
minimum expected search-reach time. But note that in the range of subjects’ visual search speed and hand movement speed, the difference between
this optimal order and the other orders are larger when search is slower or hand movement is faster. The difference between 1234 and the other
three orders starting from the small cluster (1265, 2134, and 2165) is negligible, but these four are obviously better than the two orders that start
from the large cluster (6543 and 3456). For example, for a typical human observer (O7) with l~1:4 s and m~2:7 cm=s, the simulated expected
search-reach time of 1234 is 10.3 s. The other three orders of small-cluster first cause an increase of less than 0.1 s, but the larger-cluster first orders,
6543 and 3456, would cost 0.7 s and 1.2 s more. Given the reward structure, using the latter two inferior search orders would lead to a loss of 6% and
12%, relative to the optimal one. B. Simulated optimal and close-to-optimal hand movement strategies. The hand trajectories are simulated
for a typical human observer (Observer 07) with l~1:4 s and m~2:7 cm=s. Grey filled circles denote objects. The red filled circle at the bottom
denotes the starting position of the finger. We illustrated the trajectories of optimal or close-to-optimal hand movement for two search orders, in
different colors, blue for 1234, orange for 6543. Sequences of block arrows on the objects show the search orders. The lines originated from the
starting position correspond to the trajectories of the finger. Each dot on a line marks the time when a new object gets identified. The optimal
strategy for the hand (top) is the strategy that minimizes the expected search-reach time given a specific search order. The aim-for-centroid strategy
(bottom) is to aim for the centroid of the objects that are still unidentified. The differences between the two panels are subtle. If the observer updates
her movement aim after the identification of each new object, the expected search-reach time is almost the same as that of the optimal strategy.
doi:10.1371/journal.pcbi.1002718.g002

Eye-Hand Coordination for Reward Maximization
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simulated expected search-reach time for all the six possible search

orders: 1234, 1265, 2134, 2165, 6543, 3456. Different panels are

for different conditions of search slope l and movement speed m.

The differences between 1234 and the other three orders that

start from the small cluster (1265, 2134, and 2165) are negligible,

while these four are obviously better than the other two orders that

start from the large cluster (6543 and 3456). To have an idea of the

magnitude of the difference, consider a typical human observer

(O7) with l~1:4 s and m~2:7 cm=s. The simulated expected

search-reach time of 1234 is 10.3 s. The other three orders of

small-cluster first cause an increase of less than 0.1 s, but the

larger-cluster first orders, 6543 and 3456, would cost 0.7 s and

1.2 s more. Given the reward structure, using the latter two

inferior search orders would lead to a loss of 6% and 12%, relative

to the optimal one.

We illustrate the simulation of hand strategies for the typical

observer (on l~1:4 s and m~2:7 cm=s) in Figure 2B. The lines

originated from the starting position correspond to the trajectories

of the finger. Each dot on a line marks the time when a new object

gets identified. We illustrate the trajectories for two different

search orders, 1234 (in blue) and 6543 (in orange). The three

panels are for different hand strategies. The optimal hand strategy

(top panel) is the one that minimizes the expected search-reach

time under a specific search order, based on the assumption that

the observer updates the aim of the movement every time a new

object is identified. We obtained it using a nonlinear optimization

method (the Nelder-Mead simplex method implemented as

‘‘fminsearch’’ in Matlab).

The computation outlined so far may be too complex for

humans to execute. So we considered a heuristic: always move

toward the centroid of the objects that have not been identified

yet. The observer might update her aim of movement after the

identification of each new object (bottom panel), or only after one

cluster has been identified, or never unless the target is found. We

found that the aim-for-centroid strategy is a good approximation

to the optimal strategy. If the movement aim is updated after each

object, the expected search-reach time is almost the same as that of

the optimal strategy. Even the aim-for-centroid with cluster

updating is close to optimal, corresponding to 97%–99% of the

maximum expected gain. Even if the aim is never updated, i.e. the

hand keeps moving towards its initial direction until the target is

found, the expected gain is 91%–96% of the maximum.

Results

Unless otherwise stated, the significance level used for all tests

was .05 with a Bonferroni correction for 8 observers

(:05=8~:0063).

Data pre-processing
We used Kumar’s [24] algorithms to separate saccades and

fixations, with a distance threshold of 0.5 cm for saccades. Given

that the radius of an object was 2 cm and the minimum gap

between two objects was 3 cm, we defined a circle of 3.5 cm radius

around an object as the interest area of the object (approximately

3.9 deg). One fixation or a continuous series of fixations that fell in

the interest area of an object and lasted at least 0.3 s in total was

taken as a visual examination of the object. For each trial, we

obtained the order of search and the timing of each examination.

In the search-reach task, observers failed to touch the target in a

considerable percentage of trials. We noticed that the failures of

quite a few trials were due to a violation of the speed limit just after

the eye fixated the target. We defined these trials as ‘‘almost-

successful’’ trials. Most of the speed violations occurred immediately

after the target was found and before that there was no significant

difference between the almost-successful trials and the real

successful trials in movement speed. Across observers the percentage

of almost-successful trials ranged from 18% to 30% (median: 21%).

The percentage of successful plus almost-successful trials was above

92% for all observers except one observer (O5, 75%). We completed

the almost-successful trials by assuming that thereafter the observer

would move towards the target at her mean movement speed. The

rewards of almost-successful trials were re-calculated based on the

re-calculated search-reach time. In later analyses, these completed

almost-successful trials were treated as successful trials. Since the

violation of speed limit occurred after the target had been identified,

there was no reason to assume that observers had used a different

search or reach strategy in the almost-successful trials from that

which they had used in the real successful trials, although they

received no rewards for the former.

Search slope and movement speed
Through the free search task in the training of visual search, we

could estimate how rapidly each observer could identify an object

as target or non-target. For each observer, we fitted the search

time of a trial as a linear function of the number of objects fixated

in the trial. Only successful trials were included. The variance

explained ranged from 77% to 96% across observers.

Figure 3A shows the results for a typical observer (O7). The

slope of the fitting line corresponded to the search time per object,

l. The intercept could be taken as a constant extra time to perform

the search task. Across observers, it took 1.2 to 2.0 s per object to

classify the object as target or distractor. The extra search time of

most observers was close to zero. Only one observer’s (O4) extra

search time (1.7 s) was significantly greater than zero.

We measured the observer’s hand movement speed in the reach

task of the training phase, in which the observer moved straightly

from the starting position to the designated target position.

Figure 3B shows the average trajectories of different target

positions for a typical observer (O7). The movement speed was

little influenced by the direction of movement. For each observer,

we computed the mean speed across all target positions and took it

as the observer’s movement speed m. It varied from 2.5 cm/s to

2.9 cm/s across observers. In the text accompanying Figure S2,

we discuss why we would expect the observer to move more slowly

than the speed limit of 4 cm/s.

Eye-hand dynamics in the search-reach task
Figure 4 shows the hand trajectories in the search-reach task for

two typical observers and how the movement direction of the hand

changed with the updating of visual search (for a demo of one trial,

see Video S1). Starting with red, the colors along the trajectories

sequentially denote 0, 1, 2, 3, … objects had been identified.

Green denotes that the target had been found. Observers O1 and

O8 differed in their major search orders: O1 almost always

searched in the order of 2134, while O8 used the orders 1234 and

6543 equally often. Concerning the dynamic interaction between

the eye and the hand, they had some common features: First, the

hand seldom moved straight towards the position where the eye

was examining. Rather, the hand tended to move towards future

fixation positions. Second, the hand trajectory underwent updat-

ing with the identification of target or distractors.

Efficiency of the search-reach task
Based on the search slope and movement speed of an observer,

we could predict her maximal expected gain in the search-reach

task with the optimal model described earlier. Efficiency was

defined as the average gain of successful trials divided by the

Eye-Hand Coordination for Reward Maximization
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maximal expected gain. To avoid overestimating maximal

expected gain and thus underestimating efficiency, we added the

observer’s extra search time, if positive, when computing her

minimum expected search-reach time.

We plotted the efficiency of the search-reach task for each

observer in Figure 5A. The 95% confidence interval was

computed using a bootstrap method [25] with 10,000 resamples.

We could reject the hypothesis of optimality for all observers.

Most observers were far from optimal. A median observer

achieved only 78% of the expected gain predicted by the optimal

strategy of eye-hand coordination. We will look at their actual

visual search and hand movement strategies next.

As a second index of task performance, we computed the mean

movement time after the target was found (post-found time) for

each observer and compared it to the expected post-found time for

optimal strategies (Figure 5B and Figure S3). In the search-reach

task, the expected time before the target was found did not vary

with strategies. The post-found time reflected how close the hand

had been to the target at the end of the visual search, that is, how

efficiently the hand had used the search time to approach the

target. We find the same pattern as we found in considering

efficiency: All the observers’ mean post-found movement time

were larger than what predicted by optimal strategies. For six of

the eight observers, the difference was significant.

Visual search strategy
For the search-reach task, we examined the search order of the

trials in which at least one object had been searched. Only 14 trials

were missing (O3: 1; O5: 12; O7: 1). As a median observer, the

search order of 85% of the trials was one of the six that we had

simulated earlier: 1234, 1265, 2134, 2165, 6543, 3456 (see Figure

S4A for the percentage of each search order).

As we illustrated in Figure 2A, the small cluster first strategies

(starting search with 1 or 2) are superior to the large cluster first

strategies (starting search with 3, 4, 5, or 6). We tested whether

human observers chose to use the small-cluster first strategy to save

their search-reach time. The percentages of trials of the two visual

search strategies were contrasted in Figure 6. According to a two-

tailed binomial test, only two observers (O1 and O2) correctly

searched the small cluster first more frequently than the large

cluster first. The rest observers showed no preference between the

two strategies. Thus, most observers failed to use the optimal visual

search strategy.

The two observers who correctly searched the small cluster first

in the search-reach task did not do so by accident. In the free

search task of the training phase, where the order of search did not

influence the cost of time, O1 searched in both orders equally

often, and O2 exhibited the reverse preference (large-cluster first).

In contrast, observers who happened to prefer the small cluster

Figure 3. Search slope and movement speed. A. Search time as a linear function of number of objects searched. Data of a typical
observer, O7, in the free search task. Each grey dot is for one trial. The black line is the fitting line, whose slope corresponds to the time to identify one
object, l. B. Average trajectories for different target positions. Data of the same observer O7 in the training of reach. Red filled circle denotes
the starting position. Grey filled circles denote positions of objects. In each trail, the observer moved the finger from the starting position to one
designated position. Black lines denote trajectories of hand movement averaged across trials. The number above an object denotes the measured
movement speed towards the object (cm/s). Note that the movement speeds differ little in different movement directions. The mean speed across all
target positions is regarded as the observer’s movement speed, m.
doi:10.1371/journal.pcbi.1002718.g003
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first in the training phase (O4 and O5) unfortunately gave up this

preference in the search-reach task (see Figure S4BC for search

preferences in the training of free search).

Hand movement strategy
When the position of the target is known, there is no doubt the

observer should move towards the target at her full speed, as in the

reach training task. The interesting question though is how the

subject moves her hand before the target is found. We addressed

human observers’ hand movement strategies from the following

four aspects.

1) Did human observers move before the target was

found? Yes, but six of the eight observers moved markedly slower

than they had did in the training of reach phase (Figure 7A). In

each trial of the search-reach task, we could separate the visual

search into a series of fixations and saccades. Before the observer

saccades to the target (except when the target is at the last position

searched), we are sure she does not know the position of the target.

The speed shown in Figure 7A was computed for the period from

the onset of the trial to the time the observer started a saccade to

the target. According to a two-tailed one-sample Student’s t-test

for each observer, the differences between this speed and the

average movement speed during the training were significant for

six out of eight observers and in the same direction for the

remaining two.

In the search-reach task, for a typical observer (l~1:4 s and

m~2:7 cm=s), if the observer does not move before the target is

found, she would be expected to receive only 61%,69% of the

maximal gain predicted by our model of optimal eye-hand

coordination. Obviously the human observers benefited from

moving before the target was found, but they did not make the

most of this possibility by moving at their full speed. An observer

commented after the experiment that he moved slowly because he

felt it was not wise to move too fast when he was uncertain of the

location of the target.

Is it possible that some observers might have benefited from

moving slowly or even not moving before the target was found?

We considered one possibility. Suppose that, due to visual and

motor variability, the actual movement of the hand may deviate

from the planned direction, particularly if the eye is engaged

elsewhere. If the hand is moving in a wrong direction, moving at

full speed would amplify the effect of any error. Suppose the

angular error of hand movement was a Gaussian distribution of a

standard deviation of 5 deg, a pessimistic estimate given previous

estimates of human pointing performance without visual feedback

[26]. For each observer, we simulated movement trajectories but

Figure 4. Eye-hand dynamics in the search-reach task. Hand trajectories in the search-reach task are plotted for two typical observers, O1 (left
sequence) and O8 (middle and right sequences). Each sequence is for one specific search order (labeled at top). Each panel is for one specific target
position (labeled in the panel). Each trajectory is for one trial. Colors along the trajectories code stages of visual search. Red denotes that no objects
have been examined. Cyan denotes that 1 object has been examined, and so on. Green denotes that the target has been found. Note where the hand
trajectories change going directions and how the trajectories vary with search order.
doi:10.1371/journal.pcbi.1002718.g004
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now varying speed from zero to the observer’s full speed while

adding angular errors to the portion of the hand trajectory before

the target was identified. We assumed that the observer might

search the small cluster first (123456) or the large cluster first

(654321) and simulated for these two orders separately.

In the simulation, all the observers’ maximum expected gain

increased monotonically with speed (Figure S5), regardless of their

increased motor error and search order. That is, moving slower

than their full speed would reduce their monetary rewards.

2) Did human observers accommodate their hand

movement to their search? Each time an object was identified

as a distractor, the object was excluded from the possible targets.

As we discussed earlier under the model of optimal eye-hand

coordination, given a specific order of search, the optimal hand

movement strategy could be well approximated by the strategy of

aiming at the centroid of the possible targets. Therefore, if human

observers accommodate their hand movement to their search, we

expected them to update their movement direction towards the

centroid of the as yet unsearched objects. That is, in a trial, if the

observer searched the small cluster first, she should shift towards

the large cluster when the objects in the small cluster have been

identified as distractors, and vice versa.

For trials which had no fewer than three objects fixated before

the target is found, we evaluated the change of movement

direction by computing the difference between the position of the

finger at the end of fixating the third object and that of the first

target. We used the angle d (inset of Figure 7B) to describe the

difference. Except for Observers O1 and O2 who almost always

searched the small-cluster first, we plotted the mean d across trials

separately for the visual search strategies of small-cluster first and

large-cluster first for each observer (Figure 7B). Seven of the eight

observers had the appropriate tendency to move towards the large

cluster (negative d) when searching the small cluster first. Four of

the six observers (excluding O1 and O2) correctly moved towards

the small cluster (positive d) when searching the large cluster first.

We tested whether there was a significant shift of movement in the

correct direction (for O1 and O2) or whether there the shift of

movement differed for the two search strategies in the correct

direction (for the rest observers). According to a two-tailed one-

sample Student’s t-test (for O1 and O2) or a two-tailed two-sample

Figure 5. Search-Reach: Human observers’ performance compared to optimal. A. Efficiency. Efficiency was defined as the average gain of
successful trials divided by the maximal expected gain. Most observers were far from optimal. The median efficiency across observers was 78%. B.
Movement time after the target was found. Black dot denotes the expected movement time after the target was found if the observer used the
optimal visual search and hand movement strategies. All the observers’ mean post-found movement time were larger than the minimum expected
movement time. For 6 of the 8 observers, the difference was significant. In both A and B, each bar is for one observer. Error bar denotes the 95%
confidence interval.
doi:10.1371/journal.pcbi.1002718.g005

Figure 6. Visual search strategies in the search-reach task. To
save time, observers should search the small cluster first rather than the
large cluster first. The percentages of usage of the two visual search
strategies were contrasted with each other. Star denotes a significant
difference. Only two observers correctly used the small-cluster first
strategy more often than the large-cluster first strategy. The rest of the
observers showed no significant preference between the two.
doi:10.1371/journal.pcbi.1002718.g006
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Figure 7. Hand movement strategies in the search-reach task. A. Mean movement speed before the target was found. Error bar
denotes the 95% confidence interval. Before the target was found, if the observer did not move at all, it might cost her more than 30% of the rewards.
Observers’ actual movement speed was significantly larger than zero, but six of the eight observers moved significantly and much slower than they
did in the training of reach. B. The update of movement directions for different orders of visual search. In a trial where the observer
searched no fewer than three objects before locating the target, we compared the position of the finger at the end of fixating the third object with
that of the first object. The difference of angle (inset), d, is plot separately for each observer and the search strategies of small-cluster first and large-
cluster first. Positive for shifts towards the small cluster, negative for shifts towards the large cluster. Error bar denotes the standard error. The large-
cluster first strategy for O1 and O2 had fewer than five valid trials and were not plot therefore. By the optimal hand movement strategy, the observer
should shift towards the large cluster when searching the small cluster first, thus a negative d, and vice versa. Six of the observers (O1,O6) showed
such a tendency. When searching small cluster first, five observers shifted significantly more towards the large cluster than that of large-cluster first,
or significantly towards the large cluster (for observers who had not a large-cluster first comparison). Stars denote significant difference. C. Mean
initial movement direction for different orders of visual search. For each trial with no less than one object searched before the target, the
initial movement direction was defined as the direction from the starting position to the position of the finger at the end of fixating the first object.
The direction was quantified in a polar coordinate centered at the starting position. The direction to the right was 0 degree; to the up, 90 degrees; to
the left, 180 degrees. Error bar denotes the 95% confidence interval. The solid line denotes the optimal initial movement direction, which is towards
the centroid of the six objects. The dash line denotes the middle of the two clusters. There was no significant difference in initial movement direction
between the search orders. According to the mean initial movement direction, only two of the eight observers did not deviate significantly from
optimal, while six of them were indistinguishable from a possible strategy of moving towards the middle of the two clusters.
doi:10.1371/journal.pcbi.1002718.g007
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Student’s t-test (for the rest observers), five of the differences were

significant (marked with star in Figure 7B).

To summarize, five of the eight observers appropriately adjusted

their hand movement based on current information from the

visual search strategy they were using.

3) Did human observers move towards the optimal aim

point? Although most of the observers correctly updated their

movement direction with the progressing visual search, only a few

of them moved in the direction that agreed with the optimal model

of hand movement.

For trials with no less than one object fixated before the target,

we defined the direction of initial movement as the direction from

the starting position to the position of the finger at the end of

fixating the first object. We characterized it in the angle in a polar

coordinate system that centered at the starting position and ran

counter-clockwise from the direction to the right. The mean initial

movement direction across trials is shown in Figure 7C for each

observer. According to a two-tailed one-sample Student’s t-test for

each observer, only two of the eight observers (O1 and O6) did not

deviate significantly from optimal, while six of them (including O6)

were indistinguishable from a possible strategy of moving towards

the middle of the two clusters.

4) Did the hand simply follow the eye? In Figure 7B, you

may notice that, for most observers, when the eye shifted from the

small cluster towards the large cluster, the hand shifted towards the

large cluster as well, and vice versa. This agreed with the ‘‘hand-

follows-eye’’ strategy mentioned in the Introduction. However, we

had at least two reasons to reject the hand-follows-eye strategy as an

explanation of the observers’ performances. First, the initial

movement direction was little influenced by the order of visual

search (Figure 7C), inconsistent with what would be predicted by

the hand-follows-eye strategy. Second, if the hand followed the eye,

when the fixation was switched from one object to another, the

angle of shift in hand movement direction should equal to the angles

between objects. The centers of two adjacent objects in the same

cluster were separated by 15 deg. The adjacent two objects in the

two clusters were separated by 60 deg. If the observer started search

from the small cluster, when examining the third object, the fixation

was at least 60 deg away from the initial fixation. For searches

starting from the large cluster, the third fixation should be at least 30

deg away from the initial fixation. However, the corresponding

direction shifts in hand movement were far smaller (Figure 7B).

Discussion

We tested the optimality of human strategies of eye-hand

coordination in a task that involved finding and then touching a

target among distractors as rapidly as possible. To minimize the

overall time of visual search and hand movement and thereby to

maximize expected gain, the observer needed to search the

possible locations of the target in a specific order and alter her

hand movement repeatedly in response to new visual information.

In such a task, the optimal strategies of visual search and hand

movement were inter-related and jointly determined by the time

required to identify an object and move the hand to touch it. For

objects divided into two uneven clusters, the optimal visual search

strategy was to search the small cluster first and then the large

cluster. The optimal hand movement strategy was to move

towards the centroid of the objects that had not been searched yet.

We examined human observers’ hand movement and visual

search strategies separately. We found that observers did

(correctly) move before the target was found and most observers

updated their movement direction correctly contingent on the

progress of their search.

This outcome is consistent with previous studies that show

motor compensation for increased visual and motor uncertainty

[27–29], and particularly, with those that show people vary their

trajectories of reach based on the spatial distribution of possible

target locations [30,31].

Sensitivity to probabilistic structures does not guarantee the

optimality of movement under uncertainty. In our task, where the

optimal strategy of hand movement could be clearly defined, we

found that human observers significantly departed from optimal:

Before the target was found, they did not move in their full speed

and, at the beginning of their movements, only two out of eight

correctly move in the optimal direction.

As to the visual search strategy, most of the observers failed to

prefer the optimal visual search strategy. They started their search

from the small cluster and the large cluster equally often. This

failure is probably due to the indirect link between eye movements

and the ultimate rewards. In the search-reach task, the better

search orders do not help to shorten the search time itself but

instead serves to shorten the movement time of the hand to the

target. Although we investigators could model these indirect

benefits or costs of eye movements [32], it is an open question

whether human observers could.

The sub-optimality of visual search or hand movement strategy

might have been a result of inability to plan eye movements and

hand movements independently. For instance, the endpoints of the

eye and the hand are correlated in rapid reaching [33]. However,

we considered this possibility to be improbable. The observers did

not tend to saccade to and move toward the same position. Nor

can the sub-optimality be attributed to the constraints of the visual

system. The usage of both the small-cluster first and large-cluster

first search strategies is evidence that observers had the ability to

use either. They simply did not realize one was a better strategy

than the other.

Performing visual search and hand movement at the same time

might lead to reduced performance in one or even both tasks. The

observer might need a longer time to examine an object or the

observer might have a larger variance in hand movement speed

and thus have to slow down in order not to violate the time limit.

However, as shown in Figure S1 and Figure S2, for most

observers, the search slope was not larger for the test task and

neither did the variance in hand movement speed. The slowing

down of hand movement in the test task was more likely due to a

choice of strategy, rather than constraints on motor control.

To conclude, people intelligently coordinate their hand with

their eye in an uncertain environment. However, most of them did

not use the eye and/or hand strategies that would have maximized

the expected gain of the overall activity. Our study opens up the

question: To what extent can the cost of one effector (e.g. hand) be

taken into account in the movement planning of another effector

(e.g. eye) of the same organism?

There are evidently costs of control in eye movements alone

and in hand movements alone but these costs are consistent with

near-optimal performance in the many tasks reported in the

literature and reviewed in the introduction. In our task subjects

must plan movements of two effectors (eye and hand) and it is

very plausible that the sub-optimality we observe is due to a cost

associated with planning two inter-related tasks (a ‘‘cost of

coordination’’). Testing this conjecture is a worthwhile direction

for future research.

Supporting Information

Figure S1 Search slope: free search vs. search-reach.

(PDF)
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Figure S2 Movement speed: reach training vs. search-
reach.

(PDF)

Figure S3 Histogram of the movement time after the
target was found (post-found time).

(PDF)

Figure S4 Percentage of specific search orders used by
each observer.

(PDF)

Figure S5 Maximum expected gain as a function of
hand movement speed before target was found.
(PDF)

Video S1 Eye-hand dynamics on one trial.
(AVI)
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15. Trommershäuser J, Maloney LT, Landy MS (2003) Statistical decision theory

and trade-offs in the control of motor response. Spat Vis 16: 255–275.
16. Hudson TE, Maloney LT, Landy MS (2008) Optimal compensation for

temporal uncertainty in movement planning. PLoS Comp Biol 4: e10000130.
17. Battaglia PW, Schrater PR (2007) Humans trade off viewing time and

movement duration to improve visuomotor accuracy in a fast reaching task.

J Neurosci 27: 6984–6994.

18. Sailer U, Flanagan JR, Johansson RS (2005) Eye-hand coordination during

learning of a novel visuomotor task. J Neurosci 25: 8833–8842.

19. Land MF, McLeod P (2000) From eye movements to actions: how batsmen hit

the ball. Nat Neurosci 3: 1340–1345.

20. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10: 433–436.

21. Pelli DG (1997) The VideoToolbox software for visual psychophysics:

Transforming numbers into movies. Spat Vis 10: 437–442.

22. Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink Toolbox: eye tracking

with MATLAB and the Psychophysics Toolbox. Behav Res Methods Instrum

Comput 34: 613–617.

23. Berger JO (1985) Statistical decision theory and Bayesian analysis. New York:

Springer.

24. Kumar M (2007) GUIDe Saccade Detection and Smoothing Algorithm.

Technical Report CSTR 2007-03, Stanford University, Stanford 2007. http://

hci.stanford.edu/cstr/reports/2007-03.pdf.

25. Efron B, Tibshirani RJ (1993) An introduction to the Bootstrap. New York:

Chapman & Hall.

26. Vercher JL, Magenes G, Prablanc C, Gauthier GM (1994) Eye-head-hand

coordination in pointing at visual targets: spatial and temporal analysis. Exp

Brain Res 99: 507–523.
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